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Starting problem

The starting problem is given a line and labeled points on that line we define a binary
string by taking a line segment that covers some points. Covered points are a one and
non-covered points are a zero. For example given points {1, 2,3} on the line if a line segment
covers points {1,3}, then it has a binary string 101.
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Figure 1: Example covering where the red line represents a cover of points 1 and 3 giving
the binary string 101.

We define a binary set as the set of all binary strings for a given set of points. For
building a binary set you are allowed to change the length of the line segment between
binary strings, but not rearrange the points.

Question 0.1. What are the maximum number of points where you can get a binary set?

Starting problem solution

The answer is two. We can solve two points directly, but when we move to three points the
middle point blocks just the two outer points from being covered by a line segment. That
is if we labeled our points from left to right as {1, 2,3}, then we can’t get the binary string
101.

Two dimensions

In two dimensions we now place points on a plane and instead of covering with a line segment
we cover with a rectangle. For a given covering to work we can change the length and width
of the rectangle, but we cannot rotate it. Also the points can be chosen anywhere on the
plane, but must be in the same place for the entire binary set.
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Figure 2: Example covering where the red box represents the binary string 1011

Solution in two dimensions

The answer is four. We can solve this by placing the points in a square, then moving one
point up a little, one point slightly to the left, one point slightly to the right, and the final
point slightly down. You can also think of this as rotating the square by a small (under 45
degree) amount.

Figure 3: On the left is the starting square and on the right is after shifting the points.

From there we can easily make every covering combination. Below are several ways to
show why five points can’t be solved.

Solution 1: Projections

Lemma 0.2. If two or more points share either the same x or y component, then a binary
set for five points does not exist.

Proof. Let the five points be labeled py, pa, p3, pa, ps where p; = (x;,y;), then without loss of
generality assume that points p; and p, share the same x component, x; = 5, and y; < ys.
If there exists a point p; where either y; < y; or y; > vy, then we can’t form rectangles
for {p1,p;} and {ps,p;} since one of the two rectangle must contain all three points. Thus



points ps, p4, and p; must have y components between p; and ps. Order ps, p4, ps by their x
components, that is make x3 < x4 < x5, then two of the points must either be greater than
or equal to z; or less than or equal to x; without loss of generality assume less than (for
greater than use ps instead of p3). This makes it impossible to get both {p1,ps} and {ps, p3}
since one of those rectangles must contain ps. Therefore for a solution of five points to be
possible all x and y components must be distinct. O

Lemma 0.3. When working in one dimension with n points you can cover at most n — 1
pairs of points.

Proof. This follows from the fact that in one dimension you can only cover a pair of points
if there is no point in between them. n

Theorem 0.4. There exists no binary set to cover five points in two dimensions.

Proof. Let the five points be labeled py, ps, p3, ps, and ps where p; = (z;,y;), then from
Lemma |0.2] we can strictly order the x component, that is z; < 79 < 3 < x4 < x5. This
immediately allows us to box the pairs {p1, pa}, {p2, 3}, {p3,ps}, and {ps, ps}. Now there
are 6 remaining pairs of 2 points we need to box. However we can only manipulate the y
component of the five points, see figure ] Thus by Lemma we can get, at most, 4 more
pairs. Therefore we will be unable to cover the last two pairs of points. O
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Figure 4: The projection of the points for Theorem [0.4]

Solution 2: Partitioning the plane

Let py, ps be points, then define R(py,p2) as the rectangle made from p; and py as corners.
This rectangle, R(p1,p2), will be called the minimal rectangle of p; and ps.

Given this minimal rectangle we can partition the plane into 8 octants by extending the
4 lines in either direction. We will label the octant where both the x and y components are
greater than that of either p; or ps as Oth octant then increment counterclockwise around.



Figure 5: Octant labels for some minimal rectangle

Lemma 0.5. If points lies in any of the octant combinations 03, 04, 26, 27, 47, 40, 62, 63
for a given minimal rectangle, then we can’t rectangle all the pairs.

Proof. If points are in those octants then making a rectangle cover those points requires
boxing one of the partitioning points. O

Theorem 0.6. There exists no binary set to cover five points in two dimensions.

Proof. Let the five points be labeled p1, pa, ps, ps, ps where p; = (z;,y;), then from Lemma
[0.2] we can strictly order the x component, that is 1 < 25 < 23 < 24 < x5. Now consider
R(p2,p3), R(p2,pa), R(ps,ps) from Lemma [0.5 p; and p; must lie in octants 3 and 7 or in
octants 1 and 5 for each rectangle. Without loss of generality we will assume 3 and 7 (if
using 1 and 5, then switch y components with  components). This forces y; and ys to be
between s, y3, and y4. In particular two points from s, y3, y4 must either be greater than
or less than y; and y5. Without loss of generality we will assume greater and we can label
those y3 and y4. This gives the following inequalities

T < Ty < X3 < Ty < T
Y2 <Y1 < Y3
Y2 <Y1 < VYa
Y2 < Ys < Y3
Y2 < Y5 < Ya



By Lemma Y3 # Y4, SO we have two options. If y4; > y3, then we can’t make the pair
{p2, ps} without ps being included. If y4 < y3, then we can’t make the pair {ps, ps} without
p4 being included. Thus there exists no binary set to cover five points in two dimensions. []

Solution 3: Perturbations of minimal rectangle containing all points

This solution was given by a fellow grad student, Jared Brannan, who was the person who
posed the problem to me.
Define R(P) as the minimal rectangle containing all the points, P = {p1,p2,...,pn}-

Lemma 0.7. For any set of points P, the minimal rectangle R(P) will contain at least one
point on each edge (corner counts as both edges).

Proof. This follows immediately from the definition of smallest rectangle containing all the
points, since if a edge did not contain a point we could reduce the size of the rectangle. [J

Theorem 0.8. There exists no binary set to cover five points in two dimensions.

Proof. Let P = {p1,p2, ps3, s, D5}, then by Lemma R(P) either has two points sharing
an edge or at least one fully interior point. If two points share an edge, then by Lemma (0.2
we can’t get all binary sequences for five points. If we have a fully interior point, then we
can’t cover just the exterior points. Thus there exists no binary set to cover five points in
two dimensions. O]

Higher dimensions

The final question is what is the formula for an n dimensional space? The same restrictions
apply; points can be placed anywhere but must remain constant for a full binary set, you
are covering with n dimensional hyperrectangles where any side can be changed in length,
but they cannot be rotated.

Solution in higher dimensions

The answer for n dimensional space is 2n. Solutions 1 and 3 from two dimensions generalize
pretty well, but solution 3 is the easiest to give. So I will give a proof outline for solution 1
and a full proof of solution 3.

For solution 1, first show the lower bound. We can proceed by induction. Strictly order
one of the dimensions use this to give a certain set of combinations, then using the remaining
n — 1 dimensions to solve the remaining combinations. The upper bound is exactly the same
argument, but we can show their are more combinations then we can solve.

Now for the full proof using the ideas from solution 3.

Theorem 0.9. There exists a binary set to cover 2n points in n dimensions.



Proof. Construct a n dimensional hypercube around the origin. This cube has 2n faces, so
place a point at the midpoint of each face. Now to get a given combination of points covered,
we take the hypercube and move every face corresponding to a point we don’t want covered
towards the origin. Since we can do this for any combination of points we get the full binary
set. O

Theorem 0.10. There exists no binary set to cover 2n + 1 points in n dimensions.

Proof. Let P be the set of 2n + 1 points and construct the minimal hyperrectangle R(P) for
the points P. Now we have two cases either two points lie on the same face (that is they
share some coordinate) or their is a fully interior point. If there is a fully interior point, then
we can’t get all binary string containing n — 1 one values. If there are two points sharing
the same component, then we can make the same argument as in Lemma to show that
we can’t get all binary pairs. Thus there exists no binary set to cover 2n + 1 points in n
dimensions. O

Where this problem came from

This problem was posed as a fun problem with no applications. It came from Jared, who
gave solution 3, when looking at Shattered sets.

Open questions and further generalizations

1. For another solution of the 2d case I was hoping to use graph theory to make a planarity
argument. That is, compare trying to box 5 points on the plane to the complete K
graph being non-planar. I wasn’t able to come up with a nice mapping between the
two. So the open question is does there exist a consistent mapping between the Kj
graph and boxing points such that Kj being non-planar proves that we can’t box 5
points? This may generalize well using hyper graphs or some genus argument on the
space.

2. How does this problem change if we allow for rotation? My conjecture is that it is
equivalent to adding one extra dimension.

3. How does this problem change if instead of rectangles we allow for different convex
shapes? For example if using discs instead of rectangles you can show that four points
is not possible in two dimensions.

4. Finally what can be said if we instead allow for arbitrary sets of functions instead of
shapes. For example the set of paths with restrictions on their curvature.


https://en.wikipedia.org/wiki/Shattered_set

